Classical and Bayesian inference in neuroimaging: theory.
نویسندگان
چکیده
This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.
منابع مشابه
Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملPosterior probability maps and SPMs.
This technical note describes the construction of posterior probability maps that enable conditional or Bayesian inferences about regionally specific effects in neuroimaging. Posterior probability maps are images of the probability or confidence that an activation exceeds some specified threshold, given the data. Posterior probability maps (PPMs) represent a complementary alternative to statist...
متن کاملIncorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging
The analysis of functional neuroimaging data often involves the simultaneous testing for activation at thousands of voxels, leading to a massive multiple testing problem. This is true whether the data analyzed are time courses observed at each voxel or a collection of summary statistics such as statistical parametric maps (SPMs). It is known that classical multiplicity corrections become strong...
متن کاملClassical and Bayesian inference in neuroimaging: applications.
In Friston et al. ((2002) Neuroimage 16: 465-483) we introduced empirical Bayes as a potentially useful way to estimate and make inferences about effects in hierarchical models. In this paper we present a series of models that exemplify the diversity of problems that can be addressed within this framework. In hierarchical linear observation models, both classical and empirical Bayesian approach...
متن کاملMulticlass Sparse Bayesian Regression for fMRI-Based Prediction
Inverse inference has recently become a popular approach for analyzing neuroimaging data, by quantifying the amount of information contained in brain images on perceptual, cognitive, and behavioral parameters. As it outlines brain regions that convey information for an accurate prediction of the parameter of interest, it allows to understand how the corresponding information is encoded in the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2002